On the permutation decoding for binary linear and Z4-linear Hadamard codes

نویسندگان

  • R. D. Barrolleta
  • M. Villanueva
چکیده

Permutation decoding is a technique, introduced in [3] by MacWilliams, that strongly depends on the existence of special subsets, called PD-sets, of the permutation automorphism group PAut(C) of a linear code C. In [2], it is shown how to find s-PD-sets of minimum size s + 1 for partial permutation decoding for the binary simplex code Sm of length 2 − 1, for all m ≥ 4 and 1 < s ≤ ⌊ 2−m−1 m ⌋ . In [1], an alternative permutation decoding method is presented, which can be applied to any binary systematic code (not necessarily linear), in particular to any Z4-linear code. Nevertheless, this alternative method assumes that we know an appropriate PD-set for such codes. In this talk, we obtain s-PD-sets of size s+1 for binary linear Hadamard codes (extended codes of Sm), following the techniques described in [2]. Furthermore, we provide a criterion to obtain s-PD-sets of the same size for partial permutation decoding for Z4-linear codes. As particular examples, we apply this criterion to (nonlinear) Hadamard Z4-linear codes, where we also prove that such sets are of minimum size. Finally, we present two recursive constructions to obtain s-PD-set for this family of Hadamard Z4-linear codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial permutation decoding for binary linear and Z4-linear Hadamard codes

Permutation decoding is a technique which involves finding a subset S, called PD-set, of the permutation automorphism group of a code C in order to assist in decoding. A method to obtain s-PD-sets of minimum size s + 1 for partial permutation decoding for binary linear Hadamard codes Hm of length 2 , for all m ≥ 4 and 1 < s ≤ ⌊ 2−m−1 1+m ⌋ , is described. Moreover, a recursive construction to o...

متن کامل

PD-sets for Z4-linear codes: Hadamard and Kerdock codes

Permutation decoding is a technique that strongly depends on the existence of a special subset, called PD-set, of the permutation automorphism group of a code. In this paper, a general criterion to obtain s-PD-sets of size s + 1, which enable correction up to s errors, for Z4-linear codes is provided. Furthermore, some explicit constructions of s-PD-sets of size s+1 for important families of (n...

متن کامل

Partial permutation decoding for binary Hadamard codes

Roland D. Barrolleta – Partial permutation decoding for binary Hadamard codes 1 Johann A. Briffa – Codes for Synchronization Error Correction 2 Wouter Castryck – Some two-torsion issues for curves in characteristic two 4 Gábor Fodor – Fingerprinting codes and their limits 5 E. Suárez-Canedo – About a class of Hadamard Propelinear Codes 6 Andrea Švob – On some transitive combinatorial structures...

متن کامل

The Z4-linearity of Kerdock, Preparata, Goethals, and related codes

Certain notorious nonlinear binary codes contain more codewords than any known linear code. These include the codes constructed by Nordstrom-Robinson , Kerdock, Preparata, Goethals, and Delsarte-Goethals . It is shown here that all these codes can be very simply constructed as binary images under the Gray map of linear codes over Z4, the integers mod 4 (although this requires a slight modificat...

متن کامل

Partial permutation decoding for binary linear Hadamard codes

Permutation decoding is a technique which involves finding a subset S, called PDset, of the permutation automorphism group PAut(C) of a code C in order to assist in decoding. A method to obtain s-PD-sets of size s + 1 for partial permutation decoding for the binary linear Hadamard codes Hm of length 2 m, for all m ≥ 4 and 1 < s ≤ b(2m −m− 1)/(1 + m)c, is described. Moreover, a recursive constru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015